B.A. (Honours) Examination, 2023 Semester - I (CBCS) **Subject: Economics** Course: CC-02 (Mathematical Methods for Economics - I)

Time: 3 Hours

Full Marks: 60

Questions are of value as indicated in the margin Answer any four (04) of the following questions

1. (a) Show that if f(x) is differentiable at $x = x_0$, then f(x) is also continuous at $x = x_0$.

(b) If a function is continuous over the closed interval [a,b] and differentiable over the open interval (a,b), then prove that there exists at least one point $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

2. (a) Prove that $\lim_{x\to 0} \frac{\sin x}{x} = \emptyset$. \bot .

(b) Using the Cauchy's theorem on limit, prove that: $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2}\right) = 0.$

3. (a) Find the 2^{nd} degree Taylor Polynomial of y = logx at x = 1. (b) Using the first principle of differentiation, derive $\frac{dy}{dx}$ when $y = x^2 + 1$.

8+7 = 15

7 + 8 = 15

7 + 8 = 15

4. (a) Find the critical point(s) and the maximum or minimum value of the function $y = x^2 + 2x + 1$. (b) A rectangular garden has to be built using a break wall as one side and wire fencing for the other three sides. Given 100 meters of wire fencing, determine the dimensions that creates a garden of maximum area. What is the maximum area?

6+9 = 155. (a) Graphically and mathematically interpret a convex combination of two points on a function. (b) Differentiate the function $y = logx^2$ with respect to x, using first principle of differentiation.

7 + 8 = 15

6. (a) Derive $\frac{dy}{dx}$ from the equations: (i) $x^3 + y^3 + 3x^2y + 3xy^2 = 0$; (ii) $y = 5x^2 - e^y$ (b) Verify whether the functions satisfy the Rolle's theorem: (i) $f(x) = x^2 + 2x$, over [-2,0] (ii) $f(x) = 2x^2 - 8x + 6$, over [1, 3]

7 + 8 = 15

7. (a) Briefly explain (with diagram) the concept of vector addition and scalar multiplication.

(b) For a rectangular $2' \times 3' \times 4'$ box, find the angle that the longest diagonal makes with the 4' side.

(c) Define a unit vector. For a vector U = (-1, 2, -3), find a vector of length $2/\sqrt{3}$ which points in the opposite direction.

5+5+5 = 15

8. (a) State the conditions for a system of two non-degenerate linear equations in two unknowns have (i) one solution (ii) no solution (iii) infinite number of solutions with diagrams.

(b) $L_1: x - 3y - 2z = 6$; $L_2: 2x - 4y - 3z = 8$; $L_3: -3x + 6y + 8z = -5$

For the above system, find the solution by Gaussian forward elimination and backward substitution method. 7.5 + 7.5 = 15****